Difference between revisions of "Recycling Corner/DNA Generator"
(autoconvert U-T) |
(lc all functions) |
||
| Line 1: | Line 1: | ||
'''POLYMERAZE''' takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes. | '''POLYMERAZE''' takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes. | ||
| + | |||
| + | The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt" described [[User:Remig/plico|here]] is available, it prompts to converts to a regular B-form if DNA or to a regular A-form if RNA or mixed. | ||
The message is a string entered by the user at a prompt. | The message is a string entered by the user at a prompt. | ||
| Line 21: | Line 23: | ||
Polymeraze is a member of the Plico suite of protein folding tools described [[User:Remig/plico|here]]. It may be installed and accessed as a macro with the file: | Polymeraze is a member of the Plico suite of protein folding tools described [[User:Remig/plico|here]]. It may be installed and accessed as a macro with the file: | ||
<pre>Title=PLICO Generate Polynucleotide | <pre>Title=PLICO Generate Polynucleotide | ||
| − | Script=script <path to your script folder>/polymeraze.spt; | + | Script=script <path to your script folder>/polymeraze.spt;plico_gen_nt</pre> |
saved as plicoGenNT.macro in your .jmol/macros directory as described in [[Macro]]. | saved as plicoGenNT.macro in your .jmol/macros directory as described in [[Macro]]. | ||
<pre># POLYMERAZE - Jmol script by Ron Mignery | <pre># POLYMERAZE - Jmol script by Ron Mignery | ||
| − | # v1.9 beta | + | # v1.9 beta 5/16/2014 -lc all functions |
# | # | ||
# POLYMERAZE takes a string message encoding a nucleotide (nt) sequence | # POLYMERAZE takes a string message encoding a nucleotide (nt) sequence | ||
| Line 31: | Line 33: | ||
# 5' terminus to the 3' terminus rotating the emerging helix as it goes. | # 5' terminus to the 3' terminus rotating the emerging helix as it goes. | ||
# | # | ||
| − | # The resulting polynucleotide defaults to an open B-form. If | + | # The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt" |
| − | + | # is available, it prompts to converts to a regular B-form if DNA | |
# or to a regular A-form if RNA or mixed. | # or to a regular A-form if RNA or mixed. | ||
# | # | ||
| Line 72: | Line 74: | ||
# Generate PDB atom record | # Generate PDB atom record | ||
# Writes gNa or gNb | # Writes gNa or gNb | ||
| − | function | + | function gen_atom(atomname, group, resno, xyz, comp) { |
# Fixed column format: | # Fixed column format: | ||
#ATOM 500 O4' DA B 29 -3.745 7.211 45.474 | #ATOM 500 O4' DA B 29 -3.745 7.211 45.474 | ||
| Line 87: | Line 89: | ||
# Generate a PDB nucleotide record set | # Generate a PDB nucleotide record set | ||
| − | # Calls | + | # Calls gen_atom that writes gNa or gNb |
| − | function | + | function gen_nt(i, nt, rna, comp) { |
# From constructed nucleotides | # From constructed nucleotides | ||
| Line 139: | Line 141: | ||
} | } | ||
} | } | ||
| − | var a = | + | var a = gen_atom(" P ", n3, i, P0, comp) |
| − | a += | + | a += gen_atom(" OP1", n3, i, OP1, comp) |
| − | a += | + | a += gen_atom(" OP2", n3, i, OP2, comp) |
| − | a += | + | a += gen_atom(" O5'", n3, i, O5p, comp) |
| − | a += | + | a += gen_atom(" C5'", n3, i, C5p, comp) |
| − | a += | + | a += gen_atom(" C4'", n3, i, C4p, comp) |
| − | a += | + | a += gen_atom(" O4'", n3, i, O4p, comp) |
| − | a += | + | a += gen_atom(" C3'", n3, i, C3p, comp) |
| − | a += | + | a += gen_atom(" O3'", n3, i, O3p, comp) |
| − | a += | + | a += gen_atom(" C2'", n3, i, C2p, comp) |
| − | a += | + | a += gen_atom(" C1'", n3, i, C1p, comp) |
if (rna) { | if (rna) { | ||
| − | a += | + | a += gen_atom(" O2'", n3, i, O2p, comp) |
} | } | ||
| Line 157: | Line 159: | ||
switch (nt) { | switch (nt) { | ||
case 'A' : | case 'A' : | ||
| − | a += | + | a += gen_atom(" N9 ", n3, i, N9ag, comp) |
| − | a += | + | a += gen_atom(" C8 ", n3, i, C8ag, comp) |
| − | a += | + | a += gen_atom(" N7 ", n3, i, N7ag, comp) |
| − | a += | + | a += gen_atom(" C5 ", n3, i, C5ag, comp) |
| − | a += | + | a += gen_atom(" C6 ", n3, i, C6ag, comp) |
| − | a += | + | a += gen_atom(" N6 ", n3, i, NO6ag, comp) |
| − | a += | + | a += gen_atom(" N1 ", n3, i, N1ag, comp) |
| − | a += | + | a += gen_atom(" C2 ", n3, i, C2ag, comp) |
| − | a += | + | a += gen_atom(" N3 ", n3, i, N3ag, comp) |
| − | a += | + | a += gen_atom(" C4 ", n3, i, C4ag, comp) |
break; | break; | ||
case 'C' : | case 'C' : | ||
| − | a += | + | a += gen_atom(" N1 ", n3, i, N1ct, comp) |
| − | a += | + | a += gen_atom(" C2 ", n3, i, C2ct, comp) |
| − | a += | + | a += gen_atom(" O2 ", n3, i, O2ct, comp) |
| − | a += | + | a += gen_atom(" N3 ", n3, i, N3ct, comp) |
| − | a += | + | a += gen_atom(" C4 ", n3, i, C4ct, comp) |
| − | a += | + | a += gen_atom(" N4 ", n3, i, NO4ct, comp) |
| − | a += | + | a += gen_atom(" C5 ", n3, i, C5ct, comp) |
| − | a += | + | a += gen_atom(" C6 ", n3, i, C6ct, comp) |
break; | break; | ||
case 'X' : | case 'X' : | ||
case 'G' : | case 'G' : | ||
| − | a += | + | a += gen_atom(" N9 ", n3, i, N9ag, comp) |
| − | a += | + | a += gen_atom(" C8 ", n3, i, C8ag, comp) |
| − | a += | + | a += gen_atom(" N7 ", n3, i, N7ag, comp) |
| − | a += | + | a += gen_atom(" C5 ", n3, i, C5ag, comp) |
| − | a += | + | a += gen_atom(" C6 ", n3, i, C6ag, comp) |
| − | a += | + | a += gen_atom(" O6 ", n3, i, NO6ag, comp) |
| − | a += | + | a += gen_atom(" N1 ", n3, i, N1ag, comp) |
| − | a += | + | a += gen_atom(" C2 ", n3, i, C2ag, comp) |
| − | a += | + | a += gen_atom(" N2 ", n3, i, nN2ag, comp) |
| − | a += | + | a += gen_atom(" N3 ", n3, i, N3ag, comp) |
| − | a += | + | a += gen_atom(" C4 ", n3, i, C4ag, comp) |
break; | break; | ||
case 'T' : | case 'T' : | ||
| − | a += | + | a += gen_atom(" N1 ", n3, i, N1ct, comp) |
| − | a += | + | a += gen_atom(" C2 ", n3, i, C2ct, comp) |
| − | a += | + | a += gen_atom(" O2 ", n3, i, O2ct, comp) |
| − | a += | + | a += gen_atom(" N3 ", n3, i, N3ct, comp) |
| − | a += | + | a += gen_atom(" C4 ", n3, i, C4ct, comp) |
| − | a += | + | a += gen_atom(" O4 ", n3, i, NO4ct, comp) |
| − | a += | + | a += gen_atom(" C5 ", n3, i, C5ct, comp) |
| − | a += | + | a += gen_atom(" C6 ", n3, i, C6ct, comp) |
| − | a += | + | a += gen_atom(" C7 ", n3, i, nC7ct, comp) |
break; | break; | ||
case 'D' : | case 'D' : | ||
case 'U' : | case 'U' : | ||
| − | a += | + | a += gen_atom(" N1 ", n3, i, N1ct, comp) |
| − | a += | + | a += gen_atom(" C2 ", n3, i, C2ct, comp) |
| − | a += | + | a += gen_atom(" O2 ", n3, i, O2ct, comp) |
| − | a += | + | a += gen_atom(" N3 ", n3, i, N3ct, comp) |
| − | a += | + | a += gen_atom(" C4 ", n3, i, C4ct, comp) |
| − | a += | + | a += gen_atom(" O4 ", n3, i, NO4ct, comp) |
| − | a += | + | a += gen_atom(" C5 ", n3, i, C5ct, comp) |
| − | a += | + | a += gen_atom(" C6 ", n3, i, C6ct, comp) |
break; | break; | ||
default : | default : | ||
| Line 223: | Line 225: | ||
# Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle | # Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle | ||
# a1 and all connected except by a2 must be selected | # a1 and all connected except by a2 must be selected | ||
| − | function | + | function set_angle (a1, a2, a3, toangle) { |
var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz | var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz | ||
- {(chain=gChain1) and (atomno=a2)}.xyz) | - {(chain=gChain1) and (atomno=a2)}.xyz) | ||
| Line 237: | Line 239: | ||
# a1 (or a4) and all connected except by a2 (or a3) must be selected | # a1 (or a4) and all connected except by a2 (or a3) must be selected | ||
# If selected < unselected ==> a2 < a3 and vice versa | # If selected < unselected ==> a2 < a3 and vice versa | ||
| − | function | + | function set_dihedral (a1, a2, a3, a4, toangle) { |
var curangle = angle({(chain=gChain1) and (atomno=a1)}, | var curangle = angle({(chain=gChain1) and (atomno=a1)}, | ||
{(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}, | {(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}, | ||
| Line 244: | Line 246: | ||
} | } | ||
| − | function | + | function count_atoms(seq, rna, start, finish) { |
var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19} | var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19} | ||
var cnt = 0 | var cnt = 0 | ||
| Line 254: | Line 256: | ||
# Generate a helix | # Generate a helix | ||
| − | function | + | function gen_helix_strand(reverse, drm, double) { |
var cha = ":" + gChain1 | var cha = ":" + gChain1 | ||
var chb = ":" + gChain2 | var chb = ":" + gChain2 | ||
| Line 273: | Line 275: | ||
} | } | ||
} | } | ||
| − | var aAtomCount = | + | var aAtomCount = count_atoms(seq, (drm == 1), 1, seq.count) |
| − | var bAtomCount = | + | var bAtomCount = count_atoms(cSeq, (drm > 0), 1, cSeq.count) |
gNa = 1 # global new P atom index for chain A | gNa = 1 # global new P atom index for chain A | ||
| Line 280: | Line 282: | ||
if (double) { | if (double) { | ||
gNb = (aAtomCount + bAtomCount | gNb = (aAtomCount + bAtomCount | ||
| − | - | + | - count_atoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq |
} | } | ||
| Line 306: | Line 308: | ||
for (j = 1; j <= all.atomno.max; j++) { | for (j = 1; j <= all.atomno.max; j++) { | ||
if ({atomno=j}.chain == gChain2) { | if ({atomno=j}.chain == gChain2) { | ||
| − | gA += | + | gA += gen_atom({atomno=j}.atomName, {atomno=j}.group, |
({atomno=j}.resno+seq.count+cSeq.count), | ({atomno=j}.resno+seq.count+cSeq.count), | ||
array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) | array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) | ||
| Line 349: | Line 351: | ||
# Gen NT ================================================== | # Gen NT ================================================== | ||
gA = "data \"append nt\"\n" # global PDB atom record | gA = "data \"append nt\"\n" # global PDB atom record | ||
| − | gA += | + | gA += gen_nt(aResno, seq[i], (drm == 1), FALSE); # gNa updated |
if (double) { | if (double) { | ||
nNb = gNb | nNb = gNb | ||
var nti = cSeq.count-i+1 | var nti = cSeq.count-i+1 | ||
| − | gA += | + | gA += gen_nt(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++ |
if (i > 0) { | if (i > 0) { | ||
| − | gNb -= | + | gNb -= count_atoms(cSeq, (drm>0), nti-1, nti) |
} | } | ||
} | } | ||
| Line 373: | Line 375: | ||
# Set the angles between the new NT and the old NTs | # Set the angles between the new NT and the old NTs | ||
select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | ||
| − | + | set_angle(nNa, pNa+8, pNa+7, 120.0) | |
select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) | select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) | ||
| − | + | set_dihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3) | |
select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | ||
| − | + | set_dihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3) | |
| − | + | set_dihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4) | |
} | } | ||
| Line 395: | Line 397: | ||
# Clean up | # Clean up | ||
select all | select all | ||
| − | + | refresh | |
| + | |||
# Convert to A-form if RNA or mixed else B-form | # Convert to A-form if RNA or mixed else B-form | ||
try { | try { | ||
| − | script $SCRIPT_PATH$ | + | script $SCRIPT_PATH$toabnt.spt |
| − | + | var s = format("Convert to %s-form?", ((drm > 0) ? "A" : "B")) | |
| − | + | var p = prompt(s, "Yes|No", TRUE) | |
if (p = "Yes") { | if (p = "Yes") { | ||
| − | + | to_ab_nt_auto(gChain1, (drm > 0)) | |
} | } | ||
} | } | ||
| Line 410: | Line 413: | ||
# Generate a helix or two | # Generate a helix or two | ||
| − | function | + | function plico_gen_helix(seq) { |
if (gPlicoRecord != "") { | if (gPlicoRecord != "") { | ||
| Line 418: | Line 421: | ||
ls = "" | ls = "" | ||
} | } | ||
| − | ls += format(" | + | ls += format("plico_gen_helix(\"%s\");", gSeq) |
write var ls @gPlicoRecord | write var ls @gPlicoRecord | ||
} | } | ||
| Line 469: | Line 472: | ||
# Generate | # Generate | ||
| − | + | gen_helix_strand(reverse, drm, single ? FALSE : TRUE) | |
} | } | ||
| − | function | + | function plico_gen_nt { |
echo Generating Nucleotide Helix | echo Generating Nucleotide Helix | ||
| Line 479: | Line 482: | ||
var seq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 | var seq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 | ||
if ((seq != "NULL") and (seq.count > 0)) { | if ((seq != "NULL") and (seq.count > 0)) { | ||
| − | + | plico_gen_helix(seq) | |
} | } | ||
} | } | ||
# end of polymeraze.spt</pre> | # end of polymeraze.spt</pre> | ||
Revision as of 14:54, 16 May 2014
POLYMERAZE takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes.
The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt" described here is available, it prompts to converts to a regular B-form if DNA or to a regular A-form if RNA or mixed.
The message is a string entered by the user at a prompt. It may be typed in or pasted in and be of any length. If prepended with '3' then the string is considered as 3' to 5'. If prepended with 'R' then RNA is generated instead of DNA. If prepended with 'S' then a single strand helix is produced. If prepended with 'M' then a mixed helix is produced where the first strand is DNA and the second RNA. Multiple prepends are allowed (though 'M' would be inconsistent with 'R' or 'S').
If the 3d character is ':' then the two chains are labeled by the two preceding characters instead of the default 'A' and 'B'. Likewise if the 2d character is ':' then the presumably single chain is labeled by the preceding single character.
A polynucleotide may be added onto by subsequent runs if the previous helices are not moved away. Note that a single chain helix could then be added to a double chain or RNA to DNA or whatever. Have fun...
The IUPAC/IUBMB 1 letter code is used: A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil
The top level function plicoGenNt prompts the user for input.
The top level function plicoGenHelix accepts a string as a parameter.
Polymeraze is a member of the Plico suite of protein folding tools described here. It may be installed and accessed as a macro with the file:
Title=PLICO Generate Polynucleotide Script=script <path to your script folder>/polymeraze.spt;plico_gen_nt
saved as plicoGenNT.macro in your .jmol/macros directory as described in Macro.
# POLYMERAZE - Jmol script by Ron Mignery
# v1.9 beta 5/16/2014 -lc all functions
#
# POLYMERAZE takes a string message encoding a nucleotide (nt) sequence
# and generates a corresponding double helix one nt at a time from the
# 5' terminus to the 3' terminus rotating the emerging helix as it goes.
#
# The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt"
# is available, it prompts to converts to a regular B-form if DNA
# or to a regular A-form if RNA or mixed.
#
# The message is a string entered by the user at a prompt.
# It may be typed in or pasted in and be of any length
# If prepended with '3' then the string is considered as 3' to 5'
# If prepended with 'R' then RNA is generated instead of DNA (Ts convert to Us)
# If prepended with 'S' then a single strand helix is produced
# If prepended with 'M' then a mixed helix is produced where the first
# strand is DNA and the second RNA - multiple prepends are allowed
# though 'M' is inconsistent with 'R' or 'S'
#
# If the 3d character is ':' then the two chains are labeled by the
# two preceding characters instead of the default 'A' and 'B'
# Likewise if the 2d character is ':' then the presumably single chain is
# labeled by the single preceding character
#
# The IUPAC/IUBMB 1 letter code is used:
# A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil
# The following constant values determine the pitch of the helices
kC5O5PO3 = -27.0
kO5PO3C3 = -117.8
kPO3C3C4 = -171.9
kO3C3C4C5 = 121
kC3C4C5O5 = 54
kC4C5O5P = 164
kPu = 65
kPy = 52
gChain1 = 'A' # The default chain id
gChain2 = 'B' # The default complementary chain id
gA = ""
gSeq = ""
# Lookup 3 letter code from 1 letter code
kNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU", "D":" DD", "X":" DX"}
kNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "D":"G", "X":"C"}
# Generate PDB atom record
# Writes gNa or gNb
function gen_atom(atomname, group, resno, xyz, comp) {
# Fixed column format:
#ATOM 500 O4' DA B 29 -3.745 7.211 45.474
while (atomname.size < 3) {
atomname += " ";
}
var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group )
a += format("%s%4d %8.3f", (comp ? gChain2 : gChain1), resno, xyz[1] )
a += format("%8.3f%8.3f\n", xyz[2], xyz[3] )
if (comp) gNb++; else gNa++
return a
};
# Generate a PDB nucleotide record set
# Calls gen_atom that writes gNa or gNb
function gen_nt(i, nt, rna, comp) {
# From constructed nucleotides
var P0 = [0.000, 0.000, 0.000]
var OP1= [-0.973,0.363,-1.067]
var OP2= [0.297,-1.428, 0.272]
var O5p= [1.351, 0.795,-0.286]
var C5p= [1.345, 2.211,-0.125]
var C4p= [2.732, 2.786,-0.255]
var O4p= [3.413, 2.900, 1.019]
var C3p= [3.670, 2.020,-1.178]
var O3p= [4.269, 2.960,-2.051]
var C2p= [4.717, 1.445,-0.238]
var O2p= [6.046, 1.365,-0.884]
var C1p= [4.758, 2.505, 0.846]
var N1ct= [5.277, 2.056, 2.143]
var C2ct= [6.236, 2.836, 2.740]
var O2ct= [6.670, 3.853, 2.230]
var N3ct= [6.674, 2.381, 3.958]
var C4ct= [6.256, 1.245, 4.622]
var NO4ct=[6.726, 0.972, 5.728]
var C5ct= [5.255, 0.455, 3.924]
var C6ct= [4.820, 0.900, 2.737]
var nC7ct=[4.762,-0.811, 4.551]
var N9ag= [5.256, 2.091, 2.152]
var C8ag= [4.867, 1.016, 2.913]
var N7ag= [5.532, 0.894, 4.035]
var C5ag= [6.425, 1.959, 4.013]
var C6ag= [7.401, 2.391, 4.922]
var NO6ag=[7.656, 1.780, 6.081]
var N1ag= [8.118, 3.493, 4.599]
var C2ag= [7.865, 4.104, 3.438]
var nN2ag=[8.616, 5.197, 3.181]
var N3ag= [6.968, 3.796, 2.503]
var C4ag= [6.271, 2.701, 2.856]
# Build PDB atom records common to all NTs
var n3 = kNt3from1[nt]
if (n3 = "") {
n3 = " D?"
}
if (rna) {
if (n3 == " DD") {
n3 = " D"
}
else {
n3 = n3.replace('D', ' ')
}
}
var a = gen_atom(" P ", n3, i, P0, comp)
a += gen_atom(" OP1", n3, i, OP1, comp)
a += gen_atom(" OP2", n3, i, OP2, comp)
a += gen_atom(" O5'", n3, i, O5p, comp)
a += gen_atom(" C5'", n3, i, C5p, comp)
a += gen_atom(" C4'", n3, i, C4p, comp)
a += gen_atom(" O4'", n3, i, O4p, comp)
a += gen_atom(" C3'", n3, i, C3p, comp)
a += gen_atom(" O3'", n3, i, O3p, comp)
a += gen_atom(" C2'", n3, i, C2p, comp)
a += gen_atom(" C1'", n3, i, C1p, comp)
if (rna) {
a += gen_atom(" O2'", n3, i, O2p, comp)
}
# Now add NT specific atom records
switch (nt) {
case 'A' :
a += gen_atom(" N9 ", n3, i, N9ag, comp)
a += gen_atom(" C8 ", n3, i, C8ag, comp)
a += gen_atom(" N7 ", n3, i, N7ag, comp)
a += gen_atom(" C5 ", n3, i, C5ag, comp)
a += gen_atom(" C6 ", n3, i, C6ag, comp)
a += gen_atom(" N6 ", n3, i, NO6ag, comp)
a += gen_atom(" N1 ", n3, i, N1ag, comp)
a += gen_atom(" C2 ", n3, i, C2ag, comp)
a += gen_atom(" N3 ", n3, i, N3ag, comp)
a += gen_atom(" C4 ", n3, i, C4ag, comp)
break;
case 'C' :
a += gen_atom(" N1 ", n3, i, N1ct, comp)
a += gen_atom(" C2 ", n3, i, C2ct, comp)
a += gen_atom(" O2 ", n3, i, O2ct, comp)
a += gen_atom(" N3 ", n3, i, N3ct, comp)
a += gen_atom(" C4 ", n3, i, C4ct, comp)
a += gen_atom(" N4 ", n3, i, NO4ct, comp)
a += gen_atom(" C5 ", n3, i, C5ct, comp)
a += gen_atom(" C6 ", n3, i, C6ct, comp)
break;
case 'X' :
case 'G' :
a += gen_atom(" N9 ", n3, i, N9ag, comp)
a += gen_atom(" C8 ", n3, i, C8ag, comp)
a += gen_atom(" N7 ", n3, i, N7ag, comp)
a += gen_atom(" C5 ", n3, i, C5ag, comp)
a += gen_atom(" C6 ", n3, i, C6ag, comp)
a += gen_atom(" O6 ", n3, i, NO6ag, comp)
a += gen_atom(" N1 ", n3, i, N1ag, comp)
a += gen_atom(" C2 ", n3, i, C2ag, comp)
a += gen_atom(" N2 ", n3, i, nN2ag, comp)
a += gen_atom(" N3 ", n3, i, N3ag, comp)
a += gen_atom(" C4 ", n3, i, C4ag, comp)
break;
case 'T' :
a += gen_atom(" N1 ", n3, i, N1ct, comp)
a += gen_atom(" C2 ", n3, i, C2ct, comp)
a += gen_atom(" O2 ", n3, i, O2ct, comp)
a += gen_atom(" N3 ", n3, i, N3ct, comp)
a += gen_atom(" C4 ", n3, i, C4ct, comp)
a += gen_atom(" O4 ", n3, i, NO4ct, comp)
a += gen_atom(" C5 ", n3, i, C5ct, comp)
a += gen_atom(" C6 ", n3, i, C6ct, comp)
a += gen_atom(" C7 ", n3, i, nC7ct, comp)
break;
case 'D' :
case 'U' :
a += gen_atom(" N1 ", n3, i, N1ct, comp)
a += gen_atom(" C2 ", n3, i, C2ct, comp)
a += gen_atom(" O2 ", n3, i, O2ct, comp)
a += gen_atom(" N3 ", n3, i, N3ct, comp)
a += gen_atom(" C4 ", n3, i, C4ct, comp)
a += gen_atom(" O4 ", n3, i, NO4ct, comp)
a += gen_atom(" C5 ", n3, i, C5ct, comp)
a += gen_atom(" C6 ", n3, i, C6ct, comp)
break;
default :
break;
}
return a
};
# Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle
# a1 and all connected except by a2 must be selected
function set_angle (a1, a2, a3, toangle) {
var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz
- {(chain=gChain1) and (atomno=a2)}.xyz)
var v2 = ({(chain=gChain1) and (atomno=a3)}.xyz
- {(chain=gChain1) and (atomno=a2)}.xyz)
var axis = cross(v1, v2) + {(chain=gChain1) and (atomno=a2)}.xyz
var curangle = angle({(chain=gChain1) and (atomno=a1)},
{(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)})
rotateselected @axis {(chain=gChain1) and (atomno=a2)} @{curangle-toangle}
}
# Set the dihedral to the given angle
# a1 (or a4) and all connected except by a2 (or a3) must be selected
# If selected < unselected ==> a2 < a3 and vice versa
function set_dihedral (a1, a2, a3, a4, toangle) {
var curangle = angle({(chain=gChain1) and (atomno=a1)},
{(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)},
{(chain=gChain1) and (atomno=a4)})
rotateselected {(chain=gChain1) and (atomno=a2)} {(chain=gChain1) and (atomno=a3)} @{toangle-curangle}
}
function count_atoms(seq, rna, start, finish) {
var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19}
var cnt = 0
for (var i = start; i <= finish; i++) {
cnt += (ntc[seq[i]] + (rna ? 1 : 0))
}
return cnt
}
# Generate a helix
function gen_helix_strand(reverse, drm, double) {
var cha = ":" + gChain1
var chb = ":" + gChain2
var seq = ""
if (reverse) {
for (var i = gSeq.count; i > 0; i--) {
seq += gSeq[i]%9999%0
}
}
else {
seq = gSeq%9999%0
}
var cSeq = ""
if (double) {
for (var i = seq.count; i > 0; i--) {
cSeq += ((seq[i] == 'A') and (drm > 0)) ? "U" : kNtComp[seq[i]]
}
}
var aAtomCount = count_atoms(seq, (drm == 1), 1, seq.count)
var bAtomCount = count_atoms(cSeq, (drm > 0), 1, cSeq.count)
gNa = 1 # global new P atom index for chain A
gNb = 0
if (double) {
gNb = (aAtomCount + bAtomCount
- count_atoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq
}
# Find last linkable P if any
var aResno = 1
var pNa = 1 # previous gNa
for (var i = all.count; i > 0; i--) {
# If A strand found at {0,0,0}
if (distance({atomno=i}, {0,0,0}) < 0.1) {
if ({atomno=i}.chain == gChain1) {
# Add to existing strand
echo "Adding to existing strand..."
pNa = i
aResno = {chain=gChain1}.resno.max + 1
gNa = {chain=gChain1}.atomno.max + 1
gNb += gNa
# Bump up all B chain atomno and resno
# KLUDGE to work-around of Jmol's lack of resno rewrite
savNb = gNb
gNb = aAtomCount + bAtomCount + gNa
gA = "data \"append nt\"\n" # global PDB atom record
for (j = 1; j <= all.atomno.max; j++) {
if ({atomno=j}.chain == gChain2) {
gA += gen_atom({atomno=j}.atomName, {atomno=j}.group,
({atomno=j}.resno+seq.count+cSeq.count),
array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true)
}
}
gA += "end \"append nt\""
delete @chb
script inline @{gA} # <== new atoms added here
gNb = savNb
break;
}
}
}
var bResno = aResno + seq.count + cSeq.count - 1
var nNa = gNa # new P
var nNb = 0#bBase # new comp P
# For each NT
set appendnew false
for (var i = 1; i <= seq.count; i++) {
if (seq[i] == "") {
continue
}
# Move polynucleotide O3p to bond distance 1.59 from new nt P
var pO3 = { -0.759, 0.925, 1.048}
if (double) {
select (@cha or @chb)
}
else {
select (@cha)
}
if ((i + aResno) > 2) {
var nO3 = {@cha and (atomno=@{pNa+8})}.xyz
var xyz = @{pO3 - nO3}
translateselected @xyz
}
# Gen NT ==================================================
gA = "data \"append nt\"\n" # global PDB atom record
gA += gen_nt(aResno, seq[i], (drm == 1), FALSE); # gNa updated
if (double) {
nNb = gNb
var nti = cSeq.count-i+1
gA += gen_nt(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++
if (i > 0) {
gNb -= count_atoms(cSeq, (drm>0), nti-1, nti)
}
}
gA += "end \"append nt\""
script inline @{gA} # <== new atoms added here
# Flip comp to comp strand
if (double) {
select @{"" + bResno + chb}
var v1={8.238, 2.809, 6.004}
var v2={8.461, 4.646, 4.125}
rotateSelected @v2 @v1 180.0
}
# If any older NTs
if ((i + aResno) > 2) {
# Set the angles between the new NT and the old NTs
select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
set_angle(nNa, pNa+8, pNa+7, 120.0)
select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno)))
set_dihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3)
select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
set_dihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3)
set_dihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4)
}
# Step new and previous N
aResno++; bResno--
pNa = nNa
nNa = gNa; nNb = gNb
}
# Make the nucleotide bonds
connect
# Clean up
select all
refresh
# Convert to A-form if RNA or mixed else B-form
try {
script $SCRIPT_PATH$toabnt.spt
var s = format("Convert to %s-form?", ((drm > 0) ? "A" : "B"))
var p = prompt(s, "Yes|No", TRUE)
if (p = "Yes") {
to_ab_nt_auto(gChain1, (drm > 0))
}
}
catch {
}
}
# Generate a helix or two
function plico_gen_helix(seq) {
if (gPlicoRecord != "") {
var g = format("show file \"%s\"", gPlicoRecord)
var ls = script(g)
if (ls.find("FileNotFoundException")) {
ls = ""
}
ls += format("plico_gen_helix(\"%s\");", gSeq)
write var ls @gPlicoRecord
}
var single = FALSE
var reverse = FALSE
var drm = 0
var done = FALSE
gSeq = seq%9999%0
print format ("Seq=%s", gSeq)
if (gSeq[2] == ':') {
gChain1 = gSeq[1]
gSeq = gSeq[3][9999]
}
else if (gSeq[3] == ':') {
gChain1 = gSeq[1]
gChain2 = gSeq[2]
gSeq = gSeq[4][9999]
}
while (done == FALSE) {
done = TRUE;
if (gSeq[1] == 'S') {
single = TRUE;
done = FALSE;
}
else if (gSeq[1] == '3') {
reverse = TRUE;
done = FALSE;
}
else if (gSeq[1] == 'R') {
drm = 1;
done = FALSE;
}
else if (gSeq[1] == 'M') {
drm = 2;
done = FALSE;
}
if (done == FALSE) {
gSeq = gSeq[2][9999]
}
}
if (drm = 1) {
gSeq = gSeq.replace('T', 'U')
}
else {
gSeq = gSeq.replace('U', 'T')
}
# Generate
gen_helix_strand(reverse, drm, single ? FALSE : TRUE)
}
function plico_gen_nt {
echo Generating Nucleotide Helix
# Get the sequence from the user
var seq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0
if ((seq != "NULL") and (seq.count > 0)) {
plico_gen_helix(seq)
}
}
# end of polymeraze.spt