Difference between revisions of "User talk:Remig"
Jump to navigation
Jump to search
(Alpha helix generater) |
(Ribozome - an Alpha Helix Generator) |
||
Line 1: | Line 1: | ||
I use Jmol to study protein folding. Here is a script I wrote that accepts an amino acid sequence (1 letter encoding: "AAC...FYW" for example) and generates an alpha helix using the Model Kit: | I use Jmol to study protein folding. Here is a script I wrote that accepts an amino acid sequence (1 letter encoding: "AAC...FYW" for example) and generates an alpha helix using the Model Kit: | ||
− | <pre>function get3from1(c) { | + | <pre># RIBOZOME - Jmol script by Ron Mignery |
+ | # v1.0 beta 10/19/2013 | ||
+ | # | ||
+ | # RIBOZOME takes a string message encoding an amino acid (aa) sequence | ||
+ | # and generates a corresponding alpha helix one aa at a time from the | ||
+ | # N terminus to the C terminus rotating the emerging helix as it goes. | ||
+ | # | ||
+ | # The message is a string entered by the user at a prompt. | ||
+ | # It may be typed in or pasted in and be of any length | ||
+ | # | ||
+ | # The IUPAC/IUBMB 1 letter code is used: | ||
+ | # A=ALAnine B=GLUtamine?* C=CYSteine D=ASPartate E=GLUtamate | ||
+ | # F=PHEnylalanine G=GLYcine H=HIStidine I=IsoLEucine K=LYSine | ||
+ | # L=LEUcine M=METhionine N=ASparagiNe O=PYrroLysine*** P=PROline | ||
+ | # Q=GLutamiNe R=ARGinine S=SERine T=THReonine U=SElenoCysteine | ||
+ | # V=VALine W=TRyPtophan X=UNKnown**** Y=TYRosine Z=ASparagiNe?** | ||
+ | # *Either GLU or GLN: drawn as GLN with chi3 flipped | ||
+ | # **Either ASP or ASN: drawn as ASN with chi3 flipped | ||
+ | # ***Not supported | ||
+ | # ****Unknown aa will be drawn as ALA | ||
+ | # | ||
+ | |||
+ | # The following constant values determine the pitch of the alpha helix | ||
+ | var PHI = -50 # Dihedral angle of N-CA bond (nominally -50) | ||
+ | var PSI = -60 # Dihedral angle of CA-C bond (nominally -60) | ||
+ | var OMEGA = 180 # Dihedral angle of the peptide bond (nominally 180) | ||
+ | var PEPTIDE_ANGLE = 110 # C-N-CA angle (nominally 110) | ||
+ | var PRO_BUMP = -15 # Psi angle change to N-3psi when N is Pro | ||
+ | |||
+ | # Lookup 3 letter code from 1 letter code | ||
+ | function get3from1(c) { | ||
ret = "" | ret = "" | ||
switch (c) { | switch (c) { | ||
case 'A': | case 'A': | ||
+ | case 'X': | ||
ret = "ALA"; | ret = "ALA"; | ||
break; | break; | ||
Line 37: | Line 68: | ||
break; | break; | ||
case 'N': | case 'N': | ||
+ | case 'Z': | ||
ret = "ASN"; | ret = "ASN"; | ||
break; | break; | ||
Line 42: | Line 74: | ||
ret = "PRO"; | ret = "PRO"; | ||
break; | break; | ||
+ | case 'B': | ||
case 'Q': | case 'Q': | ||
ret = "GLN"; | ret = "GLN"; | ||
Line 70: | Line 103: | ||
}; | }; | ||
+ | # Generate PDM atom record | ||
function genAtom(n, e, aa, i, xyz) { | function genAtom(n, e, aa, i, xyz) { | ||
a = format("ATOM %5d %3s %3s A", n, e, aa ) | a = format("ATOM %5d %3s %3s A", n, e, aa ) | ||
Line 77: | Line 111: | ||
}; | }; | ||
+ | # Generate an amino acid record set | ||
function genAA(i, aa, x) { | function genAA(i, aa, x) { | ||
n = x | n = x | ||
+ | # From constructed AAs | ||
N0 = [0.0, 0.0, 0.0] | N0 = [0.0, 0.0, 0.0] | ||
CA = [ 0.200, 1.174, 0.911 ] | CA = [ 0.200, 1.174, 0.911 ] | ||
− | C = [ -1.129, 1.783, 1.241 ] | + | C = [ -1.110, 1.668, 1.425 ] #[ -1.129, 1.783, 1.241 ] |
− | O = [ -1.241, 1.967, 2.726 ] | + | O = [ -1.320, 1.693, 2.62 ] #[ -1.241, 1.967, 2.726 ] |
CB = [ 1.062, 2.1950, 0.230 ] | CB = [ 1.062, 2.1950, 0.230 ] | ||
− | G1 = [ 2.396, 1.588, -0.091 ] | + | |
− | G2 = [ 0.680, 3.652, 0.423] | + | G1 = [ 2.359, 1.607, -0.344] #2.396, 1.588, -0.091 ] |
− | + | G2 = [ 1.363, 3.336, 1.157 ] #0.680, 3.652, 0.423] | |
− | + | D1 = [ 3.222, 2.656, -1.048 ] #[ 3.225, 2.340, -1.096] | |
− | + | D2 = [ 3.143, 0.904, 0.725 ] #[ 3.189, 1.093, 1.087] | |
− | + | E1 = [ 3.645, 3.749, -0.167 ] #[ 3.652, 3.503, -0.111 ] | |
+ | E2 = [ 2.491, 3.234, -2.249 ] #[ 4.342, 1.591, -1.456 ] | ||
+ | Z = [ 4.470, 4.717, -0.885 ] #[ 4.115, 3.339, 1.403 ] | ||
+ | H1 = [ 4.450, 6.006, -0.220 ] #[4.087, 4.572, 2.139] | ||
+ | H2 = [5.833, 4.228, -0.984 ] #[5.469, 2.866, 1.296] | ||
+ | |||
+ | Gp = [ 2.008, 1.24, -0.46 ] | ||
+ | Dp = [1.022, 0.213, -1.031 ] | ||
+ | |||
+ | Gfy = [ 2.368, 1.471, -0.0152 ] | ||
D1fy = [ 3.346, 1.524, 0.921 ] | D1fy = [ 3.346, 1.524, 0.921 ] | ||
− | |||
− | |||
D2fy = [ 2.493, 0.516, -1.151 ] | D2fy = [ 2.493, 0.516, -1.151 ] | ||
E1fy = [ 4.513, 0.615, 0.8244 ] | E1fy = [ 4.513, 0.615, 0.8244 ] | ||
+ | E2fy = [ 3.528, -0.336, -1.206 ] | ||
+ | Zfy = [ 4.588, -0.285, -0.168 ] | ||
+ | Hfy = [ 5.738, -1.245, -0.233 ] | ||
+ | |||
+ | Ghw = [ 2.406, 1.626, -0.134 ] | ||
+ | D1hw = [3.498, 1.936, 0.675] | ||
+ | D2hw = [ 2.713, 0.901, -1.211 ] | ||
E1hw = [ 4.160, 0.518, -1.178 ] | E1hw = [ 4.160, 0.518, -1.178 ] | ||
− | |||
E2hw = [ 4.622, 1.160, 0.0816 ] | E2hw = [ 4.622, 1.160, 0.0816 ] | ||
E3hw = [ 3.789, 2.523, 1.944 ] | E3hw = [ 3.789, 2.523, 1.944 ] | ||
Line 103: | Line 152: | ||
Z3hw = [ 5.014, 2.550, 2.503 ] | Z3hw = [ 5.014, 2.550, 2.503 ] | ||
H2hw = [ 6.153, 1.846, 1.844 ] | H2hw = [ 6.153, 1.846, 1.844 ] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | N1 = [ 2.069, -2.122, -0.554] #[ -1.965, 2.307, 0.206 ] | ||
+ | |||
+ | # Build PDB atom records common to all AAs | ||
a3 = get3from1(seq[i]) | a3 = get3from1(seq[i]) | ||
+ | if (a3 == "") { | ||
+ | a3 = "UNK" | ||
+ | } | ||
+ | print format("+ %s%d", a3, i) | ||
a = genAtom(n++, "N ", a3, i, N0) | a = genAtom(n++, "N ", a3, i, N0) | ||
a += genAtom(n++, "CA ", a3, i, CA) | a += genAtom(n++, "CA ", a3, i, CA) | ||
Line 123: | Line 169: | ||
} | } | ||
+ | # Now add AA specific atom records | ||
switch (aa) { | switch (aa) { | ||
case 'A' : | case 'A' : | ||
+ | case 'X' : | ||
+ | break; | ||
+ | case 'B' : | ||
+ | a += genAtom(n++, "CG ", a3, i, G1) | ||
+ | a += genAtom(n++, "CD ", a3, i, D1) | ||
+ | a += genAtom(n++, "OE1", a3, i, E2) # GLN with Es switched | ||
+ | a += genAtom(n++, "NE2", a3, i, E1) | ||
break; | break; | ||
case 'C' : | case 'C' : | ||
− | a += genAtom(n++, "SG ", a3, i, | + | a += genAtom(n++, "SG ", a3, i, G2) |
break; | break; | ||
case 'D' : | case 'D' : | ||
Line 133: | Line 187: | ||
a += genAtom(n++, "OD1", a3, i, D1) | a += genAtom(n++, "OD1", a3, i, D1) | ||
a += genAtom(n++, "OD2", a3, i, D2) | a += genAtom(n++, "OD2", a3, i, D2) | ||
− | + | break; | |
case 'E' : | case 'E' : | ||
a += genAtom(n++, "CG ", a3, i, G1) | a += genAtom(n++, "CG ", a3, i, G1) | ||
Line 234: | Line 288: | ||
a += genAtom(n++, "CZ ", a3, i, Zfy) | a += genAtom(n++, "CZ ", a3, i, Zfy) | ||
a += genAtom(n++, "OH ", a3, i, Hfy) | a += genAtom(n++, "OH ", a3, i, Hfy) | ||
+ | break; | ||
+ | case 'Z' : | ||
+ | a += genAtom(n++, "CG ", a3, i, G1) | ||
+ | a += genAtom(n++, "OD1", a3, i, D2) # ASN with Ds switched | ||
+ | a += genAtom(n++, "ND2", a3, i, D1) | ||
break; | break; | ||
default : | default : | ||
Line 240: | Line 299: | ||
return a | return a | ||
− | } | + | }; |
+ | |||
+ | function rotateNward (a1, a2, angle) { | ||
+ | select atomno<a1 | ||
+ | fix atomno>=a2 | ||
+ | rotateselected {atomno=a1} {atomno=a2} @angle | ||
+ | #print format("a1=%d a2=%d angle=%d", a1, a2, angle) #DEBUG | ||
+ | |||
+ | }; | ||
# GenAlph | # GenAlph | ||
− | function genAlpha(seq, | + | function genAlpha(seq, PHI, PSI, OMEGA, PEPTIDE_ANGLE, PRO_BUMP) { |
# For each aa | # For each aa | ||
Line 250: | Line 317: | ||
pn = 0 | pn = 0 | ||
pc= 0 # previous C | pc= 0 # previous C | ||
− | for (var i = 1; i <= seq.count; i++) { | + | ca1 = 0; ca2 = 0; ca3 = 0 |
+ | for (var i = 1; i <= seq.count; i++) { | ||
+ | # Step previous N | ||
pn = n | pn = n | ||
− | |||
− | + | # Move polypeptide C to bond distance from new AA N | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | # Move polypeptide C to bond distance | ||
select all | select all | ||
fix none | fix none | ||
− | translateselected { | + | translateselected {2.069, -2.122, -0.554 } #N1 |
# Gen AA | # Gen AA | ||
Line 291: | Line 333: | ||
a += "end \"append aa\"" | a += "end \"append aa\"" | ||
script inline @{a} | script inline @{a} | ||
+ | |||
+ | # If PRO | ||
+ | # Adjust i-3psi as rigid PRO D4 bumps Oi-4 as i-3psi | ||
+ | # is the most torqued psi and psis are the easiest to twist | ||
+ | if (seq[i] == 'P') { | ||
+ | rotateNward (ca3, ca3+1, PRO_BUMP) | ||
+ | } | ||
# If not first AA | # If not first AA | ||
if (pc > 0) { | if (pc > 0) { | ||
+ | |||
+ | # Gen axis on previous n perpendicular to the plane | ||
+ | # containing atoms pc, pn and pn+1 | ||
v1={atomno=pc}.xyz - {atomno=pn}.xyz | v1={atomno=pc}.xyz - {atomno=pn}.xyz | ||
− | v2={atomno= | + | v2={atomno=@{pn+1}}.xyz - {atomno=pn}.xyz |
− | + | axis = cross(v1, v2) | |
− | axis = cross(v1, v2) | + | |
− | + | # Center on atom previous n | |
− | # Center on atom | ||
axis += {atomno=pn}.xyz | axis += {atomno=pn}.xyz | ||
− | # Rotate the polypeptide on the new AA | + | # Rotate the polypeptide N on the new AA C to the |
+ | # desired angle (nominally 110) | ||
select atomno<pn | select atomno<pn | ||
fix atomno>=pn | fix atomno>=pn | ||
+ | rotateselected @axis {atomno=pn} @{PEPTIDE_ANGLE - 77} | ||
− | # | + | # Make omega dihedral OMEGA (nominally 180) |
− | rotateselected | + | rotateselected {atomno=pc} {atomno=pn} @{OMEGA - 123} |
− | # Make | + | # Make the phi PHI (nominally -50) |
− | rotateselected {atomno= | + | rotateselected {atomno=pn} {atomno=@{pn+1}} @{PHI - 30} |
− | # Make the | + | # Make the psi PSI (nominally -60) |
− | |||
− | |||
− | |||
− | |||
fix atomno>pca | fix atomno>pca | ||
select atomno<pn and (atomno != @{pc+1}) | select atomno<pn and (atomno != @{pc+1}) | ||
− | rotateselected {atomno=pc} {atomno= | + | rotateselected {atomno=pc} {atomno=@{pc-1}} @{PSI + 60} |
# If aromatic go trans on chi 1 | # If aromatic go trans on chi 1 | ||
select atomno>@{pn+4} and atomno<n | select atomno>@{pn+4} and atomno<n | ||
if ((seq[i] == 'H') || (seq[i] == 'W') || (seq[i] == 'F') || (seq[i] == 'Y')) { | if ((seq[i] == 'H') || (seq[i] == 'W') || (seq[i] == 'F') || (seq[i] == 'Y')) { | ||
− | rotateselected {atomno=@{pn+1}} {atomno=@{pn+4}} - | + | #rotateselected {atomno=@{pn+1}} {atomno=@{pn+4}} -60 |
} | } | ||
+ | # Save last three CAs for proline bumps | ||
+ | ca3 = ca2; ca2 = ca1; ca1 = pn + 1 | ||
} | } | ||
+ | |||
+ | # Step previous C | ||
pc =pn + 2 | pc =pn + 2 | ||
+ | # Make the peptide bond | ||
connect | connect | ||
} | } | ||
+ | |||
+ | # Clean up | ||
select all | select all | ||
fix none | fix none | ||
} | } | ||
− | |||
echo Generating Alpha Helix | echo Generating Alpha Helix | ||
− | |||
# Get the sequence from the user | # Get the sequence from the user | ||
− | seq = prompt(" | + | seq = prompt("*** Any existing will be cleared ***\nEnter AA sequence (1 char coded)", "")%9999 |
− | + | if (seq.count > 0) { | |
− | print format (" | + | zap # disable to keep existing structures |
− | genAlpha(seq , | + | print format ("seq=%s phi=%d psi=%d", seq, PHI, PSI) |
− | + | print format ("phi=%d psi=%d peptide angle=%d pro bump=%d", PEPTIDE_ANGLE, PRO_BUMP) | |
− | + | genAlpha(seq, PHI,PSI, OMEGA, PEPTIDE_ANGLE, PRO_BUMP) # defined at top of scripts | |
− | + | } | |
</pre> | </pre> |
Revision as of 03:07, 20 October 2013
I use Jmol to study protein folding. Here is a script I wrote that accepts an amino acid sequence (1 letter encoding: "AAC...FYW" for example) and generates an alpha helix using the Model Kit:
# RIBOZOME - Jmol script by Ron Mignery # v1.0 beta 10/19/2013 # # RIBOZOME takes a string message encoding an amino acid (aa) sequence # and generates a corresponding alpha helix one aa at a time from the # N terminus to the C terminus rotating the emerging helix as it goes. # # The message is a string entered by the user at a prompt. # It may be typed in or pasted in and be of any length # # The IUPAC/IUBMB 1 letter code is used: # A=ALAnine B=GLUtamine?* C=CYSteine D=ASPartate E=GLUtamate # F=PHEnylalanine G=GLYcine H=HIStidine I=IsoLEucine K=LYSine # L=LEUcine M=METhionine N=ASparagiNe O=PYrroLysine*** P=PROline # Q=GLutamiNe R=ARGinine S=SERine T=THReonine U=SElenoCysteine # V=VALine W=TRyPtophan X=UNKnown**** Y=TYRosine Z=ASparagiNe?** # *Either GLU or GLN: drawn as GLN with chi3 flipped # **Either ASP or ASN: drawn as ASN with chi3 flipped # ***Not supported # ****Unknown aa will be drawn as ALA # # The following constant values determine the pitch of the alpha helix var PHI = -50 # Dihedral angle of N-CA bond (nominally -50) var PSI = -60 # Dihedral angle of CA-C bond (nominally -60) var OMEGA = 180 # Dihedral angle of the peptide bond (nominally 180) var PEPTIDE_ANGLE = 110 # C-N-CA angle (nominally 110) var PRO_BUMP = -15 # Psi angle change to N-3psi when N is Pro # Lookup 3 letter code from 1 letter code function get3from1(c) { ret = "" switch (c) { case 'A': case 'X': ret = "ALA"; break; case 'C': ret = "CYS"; break; case 'D': ret = "ASP"; break; case 'E': ret = "GLU"; break; case 'F': ret = "PHE"; break; case 'G': ret = "GLY"; break; case 'H': ret = "HIS"; break; case 'I': ret = "ILE"; break; case 'K': ret = "LYS"; break; case 'L': ret = "LEU"; break; case 'M': ret = "MET"; break; case 'N': case 'Z': ret = "ASN"; break; case 'P': ret = "PRO"; break; case 'B': case 'Q': ret = "GLN"; break; case 'R': ret = "ARG"; break; case 'S': ret = "SER"; break; case 'T': ret = "THR"; break; case 'U': ret = "SEC"; break; case 'V': ret = "VAL"; break; case 'W': ret = "TRP"; break; case 'Y': ret = "TYR"; break; } return ret }; # Generate PDM atom record function genAtom(n, e, aa, i, xyz) { a = format("ATOM %5d %3s %3s A", n, e, aa ) a += format("%4d %8.3f", i, xyz[1] ) a += format("%8.3f%8.3f\n", xyz[2], xyz[3] ) return a }; # Generate an amino acid record set function genAA(i, aa, x) { n = x # From constructed AAs N0 = [0.0, 0.0, 0.0] CA = [ 0.200, 1.174, 0.911 ] C = [ -1.110, 1.668, 1.425 ] #[ -1.129, 1.783, 1.241 ] O = [ -1.320, 1.693, 2.62 ] #[ -1.241, 1.967, 2.726 ] CB = [ 1.062, 2.1950, 0.230 ] G1 = [ 2.359, 1.607, -0.344] #2.396, 1.588, -0.091 ] G2 = [ 1.363, 3.336, 1.157 ] #0.680, 3.652, 0.423] D1 = [ 3.222, 2.656, -1.048 ] #[ 3.225, 2.340, -1.096] D2 = [ 3.143, 0.904, 0.725 ] #[ 3.189, 1.093, 1.087] E1 = [ 3.645, 3.749, -0.167 ] #[ 3.652, 3.503, -0.111 ] E2 = [ 2.491, 3.234, -2.249 ] #[ 4.342, 1.591, -1.456 ] Z = [ 4.470, 4.717, -0.885 ] #[ 4.115, 3.339, 1.403 ] H1 = [ 4.450, 6.006, -0.220 ] #[4.087, 4.572, 2.139] H2 = [5.833, 4.228, -0.984 ] #[5.469, 2.866, 1.296] Gp = [ 2.008, 1.24, -0.46 ] Dp = [1.022, 0.213, -1.031 ] Gfy = [ 2.368, 1.471, -0.0152 ] D1fy = [ 3.346, 1.524, 0.921 ] D2fy = [ 2.493, 0.516, -1.151 ] E1fy = [ 4.513, 0.615, 0.8244 ] E2fy = [ 3.528, -0.336, -1.206 ] Zfy = [ 4.588, -0.285, -0.168 ] Hfy = [ 5.738, -1.245, -0.233 ] Ghw = [ 2.406, 1.626, -0.134 ] D1hw = [3.498, 1.936, 0.675] D2hw = [ 2.713, 0.901, -1.211 ] E1hw = [ 4.160, 0.518, -1.178 ] E2hw = [ 4.622, 1.160, 0.0816 ] E3hw = [ 3.789, 2.523, 1.944 ] Z2hw = [ 5.973, 1.177, 0.689 ] Z3hw = [ 5.014, 2.550, 2.503 ] H2hw = [ 6.153, 1.846, 1.844 ] N1 = [ 2.069, -2.122, -0.554] #[ -1.965, 2.307, 0.206 ] # Build PDB atom records common to all AAs a3 = get3from1(seq[i]) if (a3 == "") { a3 = "UNK" } print format("+ %s%d", a3, i) a = genAtom(n++, "N ", a3, i, N0) a += genAtom(n++, "CA ", a3, i, CA) a += genAtom(n++, "C ", a3, i, C) a += genAtom(n++, "O ", a3, i, O) if (seq[i] != 'G') { a += genAtom(n++, "CB ", a3, i, CB) } # Now add AA specific atom records switch (aa) { case 'A' : case 'X' : break; case 'B' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "CD ", a3, i, D1) a += genAtom(n++, "OE1", a3, i, E2) # GLN with Es switched a += genAtom(n++, "NE2", a3, i, E1) break; case 'C' : a += genAtom(n++, "SG ", a3, i, G2) break; case 'D' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "OD1", a3, i, D1) a += genAtom(n++, "OD2", a3, i, D2) break; case 'E' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "CD ", a3, i, D1) a += genAtom(n++, "OE1", a3, i, E1) a += genAtom(n++, "OE2", a3, i, E2) break; case 'F' : a += genAtom(n++, "CG ", a3, i, Gfy) a += genAtom(n++, "CD1", a3, i, D1fy) a += genAtom(n++, "CD2", a3, i, D2fy) a += genAtom(n++, "CE1", a3, i, E1fy) a += genAtom(n++, "CE2", a3, i, E2fy) a += genAtom(n++, "CZ ", a3, i, Zfy) break; case 'G' : break; case 'H' : a += genAtom(n++, "CG ", a3, i, Ghw) a += genAtom(n++, "ND1", a3, i, D1hw) a += genAtom(n++, "CD2", a3, i, D2hw) a += genAtom(n++, "CE1", a3, i, E2hw) a += genAtom(n++, "NE2", a3, i, E1hw) break; case 'I' : a += genAtom(n++, "CG1", a3, i, G1) a += genAtom(n++, "CG2", a3, i, G2) a += genAtom(n++, "CD1", a3, i, D1) break; case 'K' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "CD ", a3, i, D1) a += genAtom(n++, "CE ", a3, i, E1) a += genAtom(n++, "NZ ", a3, i, Z) break; case 'L' : a += genAtom(n++, "CG1", a3, i, G1) a += genAtom(n++, "CD1", a3, i, D1) a += genAtom(n++, "CD2", a3, i, D2) break; case 'M' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "SD ", a3, i, D1) a += genAtom(n++, "CE ", a3, i, E1) break; case 'N' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "OD1", a3, i, D1) a += genAtom(n++, "ND2", a3, i, D2) break; case 'P' : a += genAtom(n++, "CG ", a3, i, GP) a += genAtom(n++, "CD ", a3, i, DP) break; case 'Q' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "CD ", a3, i, D1) a += genAtom(n++, "OE1", a3, i, E1) a += genAtom(n++, "NE2", a3, i, E2) break; case 'R' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "CD ", a3, i, D1) a += genAtom(n++, "NE ", a3, i, E1) a += genAtom(n++, "CZ ", a3, i, Z) a += genAtom(n++, "NH1", a3, i, H1) a += genAtom(n++, "NH2", a3, i, H2) break; case 'S' : a += genAtom(n++, "OG ", a3, i, G1) break; case 'T' : a += genAtom(n++, "OG1", a3, i, G1) a += genAtom(n++, "CG2", a3, i, G2) break; case 'U' : a += genAtom(n++, "SeG", a3, i, G1) break; case 'V' : a += genAtom(n++, "CG1", a3, i, G1) a += genAtom(n++, "CG2", a3, i, G2) break; case 'W' : a += genAtom(n++, "CG ", a3, i, Ghw) a += genAtom(n++, "CD1", a3, i, D1hw) a += genAtom(n++, "CD2", a3, i, D2hw) a += genAtom(n++, "CE2", a3, i, E2hw) a += genAtom(n++, "NE1", a3, i, E1hw) a += genAtom(n++, "CE3", a3, i, E3hw) a += genAtom(n++, "CZ2", a3, i, Z2hw) a += genAtom(n++, "CZ3", a3, i, Z3hw) a += genAtom(n++, "CH2", a3, i, H2hw) break; case 'Y' : a += genAtom(n++, "CG ", a3, i, Gfy) a += genAtom(n++, "CD1", a3, i, D1fy) a += genAtom(n++, "CD2", a3, i, D2fy) a += genAtom(n++, "CE1", a3, i, E1fy) a += genAtom(n++, "CE2", a3, i, E2fy) a += genAtom(n++, "CZ ", a3, i, Zfy) a += genAtom(n++, "OH ", a3, i, Hfy) break; case 'Z' : a += genAtom(n++, "CG ", a3, i, G1) a += genAtom(n++, "OD1", a3, i, D2) # ASN with Ds switched a += genAtom(n++, "ND2", a3, i, D1) break; default : break; } return a }; function rotateNward (a1, a2, angle) { select atomno<a1 fix atomno>=a2 rotateselected {atomno=a1} {atomno=a2} @angle #print format("a1=%d a2=%d angle=%d", a1, a2, angle) #DEBUG }; # GenAlph function genAlpha(seq, PHI, PSI, OMEGA, PEPTIDE_ANGLE, PRO_BUMP) { # For each aa set appendnew false n = 1 pn = 0 pc= 0 # previous C ca1 = 0; ca2 = 0; ca3 = 0 for (var i = 1; i <= seq.count; i++) { # Step previous N pn = n # Move polypeptide C to bond distance from new AA N select all fix none translateselected {2.069, -2.122, -0.554 } #N1 # Gen AA a = "data \"append aa\"\n" a += genAA(i, seq[i], n); a += "end \"append aa\"" script inline @{a} # If PRO # Adjust i-3psi as rigid PRO D4 bumps Oi-4 as i-3psi # is the most torqued psi and psis are the easiest to twist if (seq[i] == 'P') { rotateNward (ca3, ca3+1, PRO_BUMP) } # If not first AA if (pc > 0) { # Gen axis on previous n perpendicular to the plane # containing atoms pc, pn and pn+1 v1={atomno=pc}.xyz - {atomno=pn}.xyz v2={atomno=@{pn+1}}.xyz - {atomno=pn}.xyz axis = cross(v1, v2) # Center on atom previous n axis += {atomno=pn}.xyz # Rotate the polypeptide N on the new AA C to the # desired angle (nominally 110) select atomno<pn fix atomno>=pn rotateselected @axis {atomno=pn} @{PEPTIDE_ANGLE - 77} # Make omega dihedral OMEGA (nominally 180) rotateselected {atomno=pc} {atomno=pn} @{OMEGA - 123} # Make the phi PHI (nominally -50) rotateselected {atomno=pn} {atomno=@{pn+1}} @{PHI - 30} # Make the psi PSI (nominally -60) fix atomno>pca select atomno<pn and (atomno != @{pc+1}) rotateselected {atomno=pc} {atomno=@{pc-1}} @{PSI + 60} # If aromatic go trans on chi 1 select atomno>@{pn+4} and atomno<n if ((seq[i] == 'H') || (seq[i] == 'W') || (seq[i] == 'F') || (seq[i] == 'Y')) { #rotateselected {atomno=@{pn+1}} {atomno=@{pn+4}} -60 } # Save last three CAs for proline bumps ca3 = ca2; ca2 = ca1; ca1 = pn + 1 } # Step previous C pc =pn + 2 # Make the peptide bond connect } # Clean up select all fix none } echo Generating Alpha Helix # Get the sequence from the user seq = prompt("*** Any existing will be cleared ***\nEnter AA sequence (1 char coded)", "")%9999 if (seq.count > 0) { zap # disable to keep existing structures print format ("seq=%s phi=%d psi=%d", seq, PHI, PSI) print format ("phi=%d psi=%d peptide angle=%d pro bump=%d", PEPTIDE_ANGLE, PRO_BUMP) genAlpha(seq, PHI,PSI, OMEGA, PEPTIDE_ANGLE, PRO_BUMP) # defined at top of scripts }