User:Remig
Jump to navigation
Jump to search
My interest is in protein folding for which I have written software tools in Java over the years. I had always displayed in JMol and only now realize I could have written in JMol script directly and have folded and viewed in the same application. I am now doing so and will present scripts of possible interest to others for the general amusement.
The script shown here before that generates polypeptide helices is now available in the Recycling Corner: Recycling_Corner/Alpha_Helix_Generator so I have removed it from here. In its place is a similar script (now revised) that I wrote that accepts a nucleotide sequence (1 letter encoding: "TACGAAC...GCT" for example) and generates a DNA or RNA single or double helix using the Model Kit:
# POLYMERAZE - Jmol script by Ron Mignery
# v1.1 beta 11/02/2013 for Jmol 13.4
#
# POLYMERAZE takes a string message encoding a nucleotide (nt) sequence
# and generates a corresponding double helix one nt at a time from the
# 5' terminus to the 3' terminus rotating the emerging helix as it goes.
#
# The message is a string entered by the user at a prompt.
# It may be typed in or pasted in and be of any length
# If prepended with '3' then the string is considered as 3' to 5'
# If prepended with 'R' then RNA is generated instead of DNA
# If prepended with 'S' then a single strand helix is produced
# If prepended with 'M' then a mixed helix is produced where the first
# strand is DNA and the second RNA - multiple prepends are allowed
# though 'M' is inconsistent with 'R' or 'S'
#
# If the 3d character is ':' then the two chains are labeled by the
# two preceding characters instead of the default 'A' and 'B'
# Likewise if the 2d character is ':' then the presumably single chain is
# labeled by the preceding single character
#
# The IUPAC/IUBMB 1 letter code is used:
# A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil
# The following constant values determine the pitch of the helices
gC5O5PO3 = -27.0
gO5PO3C3 = -117.8
gPO3C3C4 = -171.9
gCHAIN1 = 'A' # The chain id
gCHAIN2 = 'B' # The complementary chain id
# Lookup 3 letter code from 1 letter code
gNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU"}
gNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A"}
# Generate PDB atom record
# Writes gNa or gNb
function genAtom(atomname, group, resno, xyz, comp) {
# Fixed column format:
#ATOM 500 O4' DA B 29 -3.745 7.211 45.474
while (atomname.size < 3) {
atomname += " ";
}
var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group )
a += format("%s%4d %8.3f", (comp ? gCHAIN2 : gCHAIN1), resno, xyz[1] )
a += format("%8.3f%8.3f\n", xyz[2], xyz[3] )
if (comp) gNb++; else gNa++
return a
};
# Generate a PDB nucleotide record set
# Calls genAtom that writes gNa or gNb
function genNT(i, nt, rna, comp) {
# From constructed nucleotides
var P0 = [0.000, 0.000, 0.000]
var OP1= [-0.973,0.363,-1.067]
var OP2= [0.297,-1.428, 0.272]
var O5p= [1.351, 0.795,-0.286]
var C5p= [1.345, 2.211,-0.125]
var C4p= [2.732, 2.786,-0.255]
var O4p= [3.413, 2.900, 1.019]
var C3p= [3.670, 2.020,-1.178]
var O3p= [4.269, 2.960,-2.051]
var C2p= [4.717, 1.445,-0.238]
var O2p= [6.046, 1.365,-0.884]
var C1p= [4.758, 2.505, 0.846]
var N1ct= [5.277, 2.056, 2.143]
var C2ct= [6.236, 2.836, 2.740]
var O2ct= [6.670, 3.853, 2.230]
var N3ct= [6.674, 2.381, 3.958]
var C4ct= [6.256, 1.245, 4.622]
var NO4ct [6.726, 0.972, 5.728]
var C5ct= [5.255, 0.455, 3.924]
var C6ct= [4.820, 0.900, 2.737]
var nC7ct [4.762,-0.811, 4.551]
var N9ag= [5.256, 2.091, 2.152]
var C8ag= [4.867, 1.016, 2.913]
var N7ag= [5.532, 0.894, 4.035]
var C5ag= [6.425, 1.959, 4.013]
var C6ag= [7.401, 2.391, 4.922]
var NO6ag=[7.656, 1.780, 6.081]
var N1ag= [8.118, 3.493, 4.599]
var C2ag= [7.865, 4.104, 3.438]
var nN2ag [8.616, 5.197, 3.181]
var N3ag= [6.968, 3.796, 2.503]
var C4ag= [6.271, 2.701, 2.856]
# Build PDB atom records common to all NTs
n3 = gNt3from1[nt]
if (n3 = "") {
n3 = " D?"
}
var a = genAtom(" P ", n3, i, P0, comp)
a += genAtom(" OP1", n3, i, OP1, comp)
a += genAtom(" OP2", n3, i, OP2, comp)
a += genAtom(" O5'", n3, i, O5p, comp)
a += genAtom(" C5'", n3, i, C5p, comp)
a += genAtom(" C4'", n3, i, C4p, comp)
a += genAtom(" O4'", n3, i, O4p, comp)
a += genAtom(" C3'", n3, i, C3p, comp)
a += genAtom(" O3'", n3, i, O3p, comp)
a += genAtom(" C2'", n3, i, C2p, comp)
a += genAtom(" C1'", n3, i, C1p, comp)
if (rna) {
a += genAtom(" O2'", n3, i, O2p, comp)
}
# Now add NT specific atom records
switch (nt) {
case 'A' :
a += genAtom(" N9 ", n3, i, N9ag, comp)
a += genAtom(" C8 ", n3, i, C8ag, comp)
a += genAtom(" N7 ", n3, i, N7ag, comp)
a += genAtom(" C5 ", n3, i, C5ag, comp)
a += genAtom(" C6 ", n3, i, C6ag, comp)
a += genAtom(" N6 ", n3, i, NO6ag, comp)
a += genAtom(" N1 ", n3, i, N1ag, comp)
a += genAtom(" C2 ", n3, i, C2ag, comp)
a += genAtom(" N3 ", n3, i, N3ag, comp)
a += genAtom(" C4 ", n3, i, C4ag, comp)
break;
case 'C' :
a += genAtom(" N1 ", n3, i, N1ct, comp)
a += genAtom(" C2 ", n3, i, C2ct, comp)
a += genAtom(" O2 ", n3, i, O2ct, comp)
a += genAtom(" N3 ", n3, i, N3ct, comp)
a += genAtom(" C4 ", n3, i, C4ct, comp)
a += genAtom(" N4 ", n3, i, NO4ct, comp)
a += genAtom(" C5 ", n3, i, C5ct, comp)
a += genAtom(" C6 ", n3, i, C6ct, comp)
break;
case 'G' :
a += genAtom(" N9 ", n3, i, N9ag, comp)
a += genAtom(" C8 ", n3, i, C8ag, comp)
a += genAtom(" N7 ", n3, i, N7ag, comp)
a += genAtom(" C5 ", n3, i, C5ag, comp)
a += genAtom(" C6 ", n3, i, C6ag, comp)
a += genAtom(" O6 ", n3, i, NO6ag, comp)
a += genAtom(" N1 ", n3, i, N1ag, comp)
a += genAtom(" C2 ", n3, i, C2ag, comp)
a += genAtom(" N2 ", n3, i, nN2ag, comp)
a += genAtom(" N3 ", n3, i, N3ag, comp)
a += genAtom(" C4 ", n3, i, C4ag, comp)
break;
case 'T' :
a += genAtom(" N1 ", n3, i, N1ct, comp)
a += genAtom(" C2 ", n3, i, C2ct, comp)
a += genAtom(" O2 ", n3, i, O2ct, comp)
a += genAtom(" N3 ", n3, i, N3ct, comp)
a += genAtom(" C4 ", n3, i, C4ct, comp)
a += genAtom(" O4 ", n3, i, NO4ct, comp)
a += genAtom(" C5 ", n3, i, C5ct, comp)
a += genAtom(" C6 ", n3, i, C6ct, comp)
a += genAtom(" C7 ", n3, i, nC7ct, comp)
break;
case 'U' :
a += genAtom(" N1 ", n3, i, N1ct, comp)
a += genAtom(" C2 ", n3, i, C2ct, comp)
a += genAtom(" O2 ", n3, i, O2ct, comp)
a += genAtom(" N3 ", n3, i, N3ct, comp)
a += genAtom(" C4 ", n3, i, C4ct, comp)
a += genAtom(" O4 ", n3, i, NO4ct, comp)
a += genAtom(" C5 ", n3, i, C5ct, comp)
a += genAtom(" C6 ", n3, i, C6ct, comp)
break;
default :
break;
}
return a
};
# Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle
# a1 and all connected except by a2 must be selected
function setAngle (a1, a2, a3, toangle) {
var v1={atomno = a1}.xyz - {atomno = a2}.xyz
var v2={atomno = a3}.xyz - {atomno = a2}.xyz
var axis = cross(v1, v2) + {atomno = a2}.xyz
var curangle = angle({atomno=a1}, {atomno=a2}, {atomno=a3})
rotateselected @axis {atomno = a2} @{curangle-toangle}
}
# Set the dihedral to the given angle
# a1 (or a4) and all connected except by a2 (or a3) must be selected
# If selected < unselected ==> a2 < a3 and vice versa
function setDihedral (a1, a2, a3, a4, toangle) {
var curangle = angle({atomno=a1}, {atomno=a2}, {atomno=a3}, {atomno=a4})
rotateselected {atomno=a2} {atomno=a3} @{toangle-curangle}
}
function countAtoms(seq, rna, start, finish) {
var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19}
var cnt = 0
for (var i = start; i <= finish; i++) {
cnt += (ntc[seq[i]] + (rna ? 1 : 0))
}
return cnt
}
# Generate a helix
function genHelixStrand(gSeq, reverse, drm, double) {
var cha = ":" + gCHAIN1
var chb = ":" + gCHAIN2
var seq = ""
if (reverse) {
for (var i = gSeq.count; i > 0; i--) {
seq += gSeq[i]%9999%0
}
}
else {
seq = gSeq%9999%0
}
cSeq = ""
if (double) {
for (var i = seq.count; i > 0; i--) {
cSeq += ((seq[i] == 'A') and (dr > 0)) ? "U" : gNtComp[seq[i]]
}
}
var aAtomCount = countAtoms(seq, (drm == 1), 1, seq.count)
var bAtomCount = countAtoms(cSeq, (drm > 0), 1, cSeq.count)
gNa = 1 # global new P atom index for chain A
gNb = 0
if (double) {
gNb = (aAtomCount + bAtomCount
- countAtoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq
}
#var bBase = (all.count + countAtoms(seq, (drm > 0), seq.count) + 1)
# Find last linkable P if any
var aResno = 1
var pNa = 1 # previous gNa
for (var i = all.count; i > 0; i--) {
# If A strand found at {0,0,0}
if (distance({atomno=i}, {0,0,0}) < 0.1) {
if ({atomno=i}.chain == gCHAIN1) {
# Add to existing strand
echo "Adding to existing strand..."
pNa = i
aResno = {chain=gCHAIN1}.resno.max + 1
gNa = {chain=gCHAIN1}.atomno.max + 1
gNb += gNa
# Bump up all B chain atomno and resno
# KLUDGE to work-around of Jmol's lack of resno rewrite
savNb = gNb
gNb = aAtomCount + bAtomCount + gNa
gA = "data \"append nt\"\n" # global PDB atom record
for (j = 1; j <= all.atomno.max; j++) {
if ({atomno=j}.chain == gCHAIN2) {
gA += genAtom({atomno=j}.atomName, {atomno=j}.group,
({atomno=j}.resno+seq.count+cSeq.count),
array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true)
}
}
gA += "end \"append nt\""
delete @chb
script inline @{gA} # <== new atoms added here
gNb = savNb
break;
}
}
}
var bResno = aResno + seq.count + cSeq.count - 1
var nNa = gNa # new P
var nNb = 0#bBase # new comp P
# For each NT
set appendnew false
for (var i = 1; i <= seq.count; i++) {
if (seq[i] == "") {
continue
}
# Move polynucleotide O3p to bond distance from new nt P
var pO3 = {-0.521, 0.638, 1.234}
select all
if ((i + aResno) > 2) {
var nO3 = {atomno=@{pNa+8}}.xyz
var xyz = @{pO3 - nO3}
translateselected @xyz
}
# Gen NT ==================================================
gA = "data \"append nt\"\n" # global PDB atom record
gA += genNT(aResno, seq[i], (drm == 1), FALSE); # gNa updated
if (double) {
nNb = gNb
var nti = cSeq.count-i+1
gA += genNT(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++
if (i > 0) {
gNb -= countAtoms(cSeq, (drm>0), nti-1, nti)
}
}
gA += "end \"append nt\""
script inline @{gA} # <== new atoms added here
# Flip comp to comp strand
if (double) {
select @{"" + bResno + chb}
var v1={8.238, 2.809, 6.004}
var v2={8.461, 4.646, 4.125}
rotateSelected @v2 @v1 180.0
}
# If any older NTs
if ((i + aResno) > 2) {
# Set the angles between the new NT and the old NTs
select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
setAngle(nNa, pNa+8, pNa+7, 120.0)
select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno)))
setDihedral(nNa+4, nNa+3, nNa, pNa+8, gC5O5PO3)
select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
setDihedral(nNa+3, nNa, pNa+8, pNa+7, gO5PO3C3)
setDihedral(nNa, pNa+8, pNa+7, pNa+5, gPO3C3C4)
}
# Step new and previous N
aResno++; bResno--
pNa = nNa; pnb = nNb
nNa = gNa; nNb = gNb
}
# Make the nucleotide bonds
connect
# Clean up
select all
print format("%d atoms generated for chain %s", gNa+gNb,
(comp ? gCHAIN2 : gCHAIN1))
}
# Generate a helix or two
function genHelix(gSeq) {
var single = FALSE
var reverse = FALSE
var drm = 0
var done = FALSE
gSeq = gSeq%9999%0
print format ("Seq=%s", gSeq)
if (gSeq[2] == ':') {
gCHAIN1 = gSeq[1]
gSeq[1] = ' '; gSeq[2] = ' '
gSeq = gSeq%0
}
else if (gSeq[3] == ':') {
gCHAIN1 = gSeq[1]
gCHAIN2 = gSeq[2]
gSeq[1] = ' '; gSeq[2] = ' '; gSeq[3] = ' '
gSeq = gSeq%0
}
while (done == FALSE) {
done = TRUE;
if (gSeq[1] == 'S') {
single = TRUE;
done = FALSE;
}
else if (gSeq[1] == '3') {
reverse = TRUE;
done = FALSE;
}
else if (gSeq[1] == 'R') {
drm = 1;
done = FALSE;
}
else if (gSeq[1] == 'M') {
drm = 2;
done = FALSE;
}
if (done == FALSE) {
gSeq[1] = ' '
gSeq = gSeq%0
}
}
# Generate
genHelixStrand(gSeq, reverse, drm, single ? FALSE : TRUE)
}
# ==============================================
echo Generating Alpha Helix
# Get the sequence from the user
gSeq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0
if (gSeq.count > 0) {
genHelix(gSeq)
}